Ingegneria civile e industriale

Anno
2021
Struttura
DIPARTIMENTO DI SCIENZE DI BASE ED APPLICATE PER L'INGEGNERIA
Descrizione
La chimica, la fisica e la matematica sono discipline scientifiche la cui storia è legata strettamente alla storia della conoscenza umana. Da sempre queste discipline hanno aiutato l’uomo ad affrontare e risolvere i problemi del mondo reale. Questo è ancora più vero nei nostri giorni nei quali le sfide che deve affrontare la nostra società richiedono strumenti sempre più sofisticati. In effetti, alla base delle moderne tecnologie ci sono gli strumenti più avanzati della chimica, della fisica e della matematica. Il progetto, articolato in varie attività di laboratorio, ha lo scopo di mostrare alcune applicazioni di questi strumenti. Si mostrerà cosa sono il suono e il rumore e come misurare l’inquinamento acustico. Si mostrerà cosa sono i microscopi elettronici, i microscopi a forza atomica e i miscroscopi ottici e come costruire immagini di oggetti infinitamente piccoli. Si mostrerà cosa succede in un laboratorio di chimica. Si mostrerà cosa è e a cosa serve il calcolo scientifico. Le attività di laboratorio avranno carattere sperimentale e saranno svolte nel Laboratorio di Acustica Fisica, nel Laboratorio Informatico e nel Laboratorio di Chimica del Dipartimento Scienze di Base e Applicate per l’Ingegneria della Sapienza e nel Laboratorio per le Nanotecnologie e le Nanoscienze della Sapienza. Gli studenti saranno guidati a svolgere loro stessi dei semplici esperimenti e parteciperanno a esperimenti più sofisticati.
Con questo progetto gli studenti impareranno come la chimica, la fisica e la matematica siano strumenti fondamentali per capire la realtà che ci circonda e per creare tecnologie innovative.
Struttura organizzativa
Tipologia posti
Coprogettazione totale
Erogazione
in presenza
Open badge
Competenza matematica e competenza in scienze, tecnologie e ingegneria
Attivo
1
Sede
Sede esterna in Roma
Mesi
  • Febbraio,
  • Marzo,
  • Aprile,
  • Maggio
Giorni
  • Mercoledì,
  • Venerdì
Orari
PM
Posti disponibili
20
Monte ore
12
Ambito
Scientifico (matematica, informatica, fisica, chimica, biologia, scienze della terra, geologia)
Competenze trasversali
Attitudini al lavoro di gruppo
Capacità di comunicazione
Capacità di problem solving
Spirito di iniziativa
Tipo scuole
IP Industriali
Liceo Classico
Liceo Scientifico
Classi ammesse
Quarta
Il progetto verrà sviluppato fornendo inizialmente alcune informazioni base sulle tecnologie e sulla strumentazione che verranno utilizzate nelle varie attività di laboratorio. Successivamente, guidati da ricercatori esperti, gli studenti parteciperanno a semplici esperimenti in cui gli strumenti verranno utilizzati sia per lo studio di fenomeni di base che per applicazioni a problemi del mondo reale.
Gli studenti acquisiranno competenze su come vengono svolte le attività in un laboratorio di ricerca e su come condurre una ricerca scientifica. Inoltre, acquisiranno familiarità con alcune metodologie avanzate della chimica, della fisica e della matematica. Impareranno a confrontarsi con problemi del mondo reale e a riconoscere quali strumenti delle scienze di base è necessario utilizzare per poterli affrontare. Gli studenti acquisiranno anche capacità di comunicazione attraverso la realizzazione di materiale didattico che descriva il lavoro svolto.
Anno
2021
Struttura
DIPARTIMENTO DI SCIENZE DI BASE ED APPLICATE PER L'INGEGNERIA
Descrizione
Lo studio delle interazioni tra popolazioni ha applicazioni in molti campi, dalla chimica all'ecologia, dalla fisica nucleare alla epidemiologia. Un modello classico utilizzato per descrivere due specie interagenti è il modello preda-predatore di Lotka-Volterra. Nel corso delle attività del progetto verranno illustrate le caratteristiche principali del modello e verrà mostrato come utilizzarlo per rappresentare vari tipi di interazione. Verranno utilizzati degli strumenti di calcolo per simulare le variazioni delle due specie al variare del tempo in vari scenari. Gli studenti verranno guidati per compiere loro stessi le simulazioni e verrà prodotto del materiale contenente la descrizione del modello e delle simulazioni fatte.
Con questo progetto gli studenti impareranno come la matematica sia uno strumento fondamentale per studiare la realtà che ci circonda e come la simulazione permetta di ricavare informazioni difficili da ottenere tramite osservazioni dirette.
Struttura organizzativa
Tipologia posti
Coprogettazione totale
Erogazione
in presenza
Open badge
Competenza matematica e competenza in scienze, tecnologie e ingegneria
Attivo
1
Sede
Sede esterna in Roma
Mesi
  • Dicembre,
  • Gennaio,
  • Febbraio,
  • Marzo
Giorni
  • Mercoledì
Orari
PM
Posti disponibili
15
Monte ore
24
Ambito
Scientifico (matematica, informatica, fisica, chimica, biologia, scienze della terra, geologia)
Competenze trasversali
Attitudini al lavoro di gruppo
Capacità di comunicazione
Capacità di problem solving
Spirito di iniziativa
Tipo scuole
Liceo Classico
Liceo Scientifico
Classi ammesse
Quarta
Il progetto verrà sviluppato fornendo inizialmente alcune informazioni storiche sullo sviluppo dei modelli di crescita di popolazione e sul contributo fondamentale fornito in questo settore dal matematico Vito Volterra. Successivamente si introdurranno gli strumenti matematici necessari a descrivere il modello preda-predatore. Quindi si analizzeranno i vari scenari che il modello permette di descrivere ricorrendo a strumenti di calcolo per la simulazione. Infine, gli studenti realizzeranno del materiale didattico per illustrare il lavoro svolto.
Gli studenti acquisiranno competenze matematiche e informatiche di base. In particolare, gli studenti impareranno a formulare un modello matematico a partire dall'analisi di un fenomeno del mondo reale. Acquisiranno gli strumenti matematici di base per descrivere il fenomeno in esame e per simularne il comportamento. Impareranno poi a visualizzare i risultati delle simulazioni e a interpretarli. Gli studenti acquisiranno anche capacità di comunicazione attraverso la realizzazione di materiale didattico che descriva il lavoro svolto.
Anno
2021
Struttura
DIPARTIMENTO DI INGEGNERIA ASTRONAUTICA, ELETTRICA ED ENERGETICA
Descrizione
Il corso proposto ha come scopo principale quello di introdurre lo studente ai concetti di base della termoidraulica e della meccanica dei fluidi. L’obiettivo secondario del corso è di illustrare come questi trovino un’applicazione nella pratica industriale e, in particolare, nell’ambito della progettazione di impianti nucleari. Attività di laboratorio sono previste per favorire una metodologia di apprendimento fortemente integrata in cui i concetti appresi a livello teorico sono successivamente osservati “in azione” tramite l’utilizzo di sezioni di prova didattiche, sotto la supervisione del docente.
Struttura organizzativa
Tipologia posti
Normale
Erogazione
in presenza
Open badge
Competenza matematica e competenza in scienze, tecnologie e ingegneria
Attivo
1
Sede
Sede esterna in Roma
Mesi
  • Gennaio,
  • Febbraio,
  • Marzo,
  • Aprile
Giorni
  • Lunedì,
  • Venerdì
Orari
PM
Posti disponibili
8
Monte ore
40
Ambito
Scientifico (matematica, informatica, fisica, chimica, biologia, scienze della terra, geologia)
Competenze trasversali
Attitudini al lavoro di gruppo
Capacità di comunicazione
Capacità di diagnosi
Capacità di organizzare il proprio lavoro
Capacità di problem solving
Capacità di relazioni
Tipo scuole
IT Meccanico
Liceo Classico
Liceo Scientifico
Classi ammesse
Quarta
Quinta
Una prima parte del corso è dedicata all’introduzione teorica dei concetti di base della termoidraulica e della meccanica dei fluidi con riferimento alla loro pratica applicazione nella progettazione di alcuni sistemi e componenti presenti in un tipico impianto nucleare. L’attività proseguirà in laboratorio dove gli studenti avranno modo di prendere confidenza con le sezioni di prova didattiche e apprendere il loro funzionamento. Durante questa fase, sono previste esercitazioni in cui, guidati dal docente, gli studenti avranno modo di osservare nella pratica gli effetti di alcuni dei concetti appresi a lezione. Per incentivare la comprensione dei concetti, problemi elementari di progettazione termoidraulica sono risolti in classe guidati dal docente e, dove possibile, sulla base dei risultati ottenuti durante le esercitazioni in laboratorio. Le esercitazioni in classe sono eseguite tramite l’ausilio di fogli di calcolo Microsoft Excel. Parte del programma sarà dedicato all’apprendimento di questo strumento informatico e a un suo utilizzo efficiente per fini scientifici/ingegneristici. L’interazione tra gli studenti è fortemente incentivata sulla base dei principi del peer learning.
Per la partecipazione al corso è richiesta una conoscenza di base dei principi della termodinamica e dello scambio termico consistente con quanto impartito a uno studente di scuola superiore. E' inoltre caldamente consigliata attitudine a lavorare in gruppo e all’interazione costruttiva con gli altri studenti.

Una volta completato il corso lo studente avrà acquisito una comprensione dei principi dello scambio termico e della meccanica dei fluidi necessari alla progettazione di base di componenti industriali e sarà in grado di applicarli con l'ausilio di fogli di calcolo Excel
Anno
2021
Struttura
DIPARTIMENTO DI INGEGNERIA ASTRONAUTICA, ELETTRICA ED ENERGETICA
Descrizione
Il corso proposto ha come scopo principale quello di introdurre allo studente i principi fondamentali sul funzionamento dei reattori nucleari, il loro controllo e i principali aspetti di sicurezza. Tali obiettivi verranno raggiunti tramite lo sviluppo di un modello matematico semplificato in grado di descrivere il comportamento in transitorio di un reattore ed i relativi sistemi di controllo e di sicurezza. Il modello sarà implementato in MATLAB e successivamente verrà utilizzato con Arduino per comandare meccanicamente la movimentazione dei principali strumenti di controllo e visualizzare, tramite l’utilizzo di led, la distribuzione delle temperature nel nocciolo del reattore. Al termine del laboratorio saranno previste delle sessioni di simulazione di un impianto nucleare della tipologia più diffusa tramite simulatori real-time su PC, per verificare il comportamento dei sistemi di sicurezza.
Struttura organizzativa
Tipologia posti
Normale
Erogazione
in presenza
Open badge
Competenza matematica e competenza in scienze, tecnologie e ingegneria
Attivo
1
Sede
Sede esterna in Roma
Mesi
  • Febbraio,
  • Marzo,
  • Aprile,
  • Maggio
Giorni
  • Lunedì,
  • Martedì,
  • Mercoledì,
  • Giovedì,
  • Venerdì
Orari
Indifferente
Posti disponibili
6
Monte ore
40
Ambito
Scientifico (matematica, informatica, fisica, chimica, biologia, scienze della terra, geologia)
Competenze trasversali
Attitudini al lavoro di gruppo
Capacità di diagnosi
Capacità di problem solving
Tipo scuole
IT Chimico
IT Elettronico/Elettrotecnico
IT Meccanico
Liceo Classico
Liceo Scientifico
Classi ammesse
Quarta
Quinta
Una prima parte del corso sarà dedicata alla descrizione del funzionamento dei reattori nucleari a fissione. In questa prima parte del corso verranno inoltre descritte le varie modalità di controllo di un reattore e gli effetti della movimentazione delle barre di controllo sulle principali grandezze fisiche che caratterizzano il funzionamento del reattore (pressione, temperatura, potenza). Acquisite tali conoscenze di base, la seconda parte del corso verterà sullo sviluppo di un semplice modello matematico per la simulazione del comportamento dinamico del reattore. Verranno quindi fornite allo studente le conoscenze di base per l’utilizzo di MATLAB/Simulink e per la visualizzazione e l’interpretazione dei risultati. Successivamente lo studente sarà guidato nell’implementazione del modello in una scheda programmabile (Arduino) per la realizzazione di una simulazione in scala del comportamento del nocciolo di un reattore nucleare tramite la movimentazione delle barre di controllo e visualizzazione del profilo di temperatura. Al termine del laboratorio saranno previste delle sessioni di simulazione, tramite simulatori su PC, per verificare il comportamento di un reattore raffreddato ad acqua pressurizzata.
Conoscenza di base dei principi di funzionamento dei reattori nucleari a fissione e dei relativi sistemi di sicurezza.
Acquisizione delle competenze di base per utilizzare MATLAB e Arduino.
Attitudine a lavorare in gruppo, collaborando alla realizzazione di un modello semplificato di reattore nucleare.
Anno
2021
Struttura
DIPARTIMENTO DI INGEGNERIA ASTRONAUTICA, ELETTRICA ED ENERGETICA
Descrizione
Il Progetto è rivolto alle Classe V dei Licei ed Istituti Tecnici, con lo scopo principale di introdurre gli studenti alle missioni spaziali e alle problematiche legate all'ambiente in cui si opera nello spazio. Gli studenti apprenderanno la configurazione generale di un veicolo spaziale e i vari sottosistemi necessari per il suo funzionamento, inclusi i sistemi e gli impianti di bordo e le infrastrutture di supporto a terra. Si partirà da un semplice nanosatellite della classe dei Cubesat (1 litro di volume e 1 kg di peso) fino al più grande veicolo spaziale mai realizzato, la Stazione Spaziale Internazionale.
Si porrà in particolare l'accento sulle problematiche dell'ambiente spaziale e alla sperimentazione necessaria per qualificare un veicolo spaziale per la sua missione. In questo modo gli studenti saranno esposti ai concetti relativi alla composizione e stratificazione dell'atmosfera terrestre, alle variazioni climatiche, all'effetto dell'ozono, al 'vuoto' spaziale e alle escursioni termiche estreme che si verificano in orbita e il problema sempre più attuale del Global Warminge come si lega allo studio dell'ambiente extraterrestre.
Struttura organizzativa
Tipologia posti
Coprogettazione totale
Erogazione
in modalità mista
Open badge
Competenza matematica e competenza in scienze, tecnologie e ingegneria
Attivo
1
Sede
Sede esterna in Roma
Mesi
  • Gennaio,
  • Febbraio,
  • Marzo,
  • Aprile,
  • Maggio,
  • Giugno
Giorni
  • Lunedì,
  • Martedì,
  • Mercoledì,
  • Giovedì,
  • Venerdì
Orari
AM
Posti disponibili
35
Monte ore
40
Ambito
Scientifico (matematica, informatica, fisica, chimica, biologia, scienze della terra, geologia)
Competenze trasversali
Attitudini al lavoro di gruppo
Capacità di comunicazione
Capacità di organizzare il proprio lavoro
Capacità nelle flessibilità
Spirito di iniziativa
Tipo scuole
IT Meccanico
Classi ammesse
Quinta
Lo studente verrà a conoscenza innanzitutto degli aspetti fisici dell'ambiente spaziale e delle leggi che lo governano. Successivamente utilizzerà le metodologie numeriche e sperimentali disponibili presso il Laboratorio di Sistemi Spaziali, iniziando anche a comprendere come si progetta un minisatellite e quali sono le verifiche ambientali che si devono effettuare a terra prima di posizionarlo in orbita.
Le competenze specifiche che lo studente potrà acquisire sono gli effetti sui veicoli spaziali e sull'uomo del vuoto, dei raggi ultravioletti, delle radiazioni ionizzanti,dell'ossigeno atomico, dei cicli termici e dei detriti spaziali, tipici dell'ambiente spaziale. Una particolare attenzione sarà dedicata ai detriti spaziali, problema molto attuale e con conseguenze che si possono prevedere sempre più rilevanti nel prossimo futuro.
Anno
2021
Struttura
DIPARTIMENTO DI INGEGNERIA CHIMICA, MATERIALI, AMBIENTE
Descrizione
Che cosa fare per rendere le nostre città più inclusive, sicure, resilienti e sostenibili?
Se è vero che ogni realtà ha le proprie caratteristiche che derivano da condizioni socio-economiche-culturali di contesto, la riduzione delle vulnerabilità locali sintetizza un obiettivo prioritario comune: ridurre il rischio per aumentare la resilienza delle singole comunità.
C’è una stretta relazione tra i due concetti che si inverte a seconda che si lavori sulla gestione degli impatti o sulla riduzione delle vulnerabilità, sulla contingenza o sulla prevenzione. Più si agisce in risposta a sollecitazioni contingenti, e più si interviene in ritardo con misure approssimative, più gli impatti che l’evento produce possono risultare notevoli, aumentando così il divario tra livello di rischio e capacità del sistema di assorbirlo, ovvero di essere resiliente.
Il percorso si prefigge l’obiettivo di diffondere la cultura della sicurezza attraverso la partecipazione ad un laboratorio che prevede “simulazioni” (role-playing game) di procedure e piani di emergenza che necessitano di individuare il problema, decidere una strategia, gestire l’imprevisto, definire i ruoli (amministratori, cittadini, esperti).
Struttura organizzativa
Tipologia posti
Normale
Erogazione
in presenza
Open badge
Competenza matematica e competenza in scienze, tecnologie e ingegneria
Attivo
1
Sede
Citta universitaria
Mesi
  • Maggio
Giorni
  • Venerdì,
  • Sabato
Orari
Indifferente
Posti disponibili
24
Monte ore
30
Ambito
Scientifico (matematica, informatica, fisica, chimica, biologia, scienze della terra, geologia)
Competenze trasversali
Attitudini al lavoro di gruppo
Capacità decisionali
Capacità di diagnosi
Capacità di organizzare il proprio lavoro
Capacità di problem solving
Capacità nella visione di insieme
Tipo scuole
IP Artigianato
IP Industriali
IP Tecnici
IT Costruzioni
IT Informatico/Telecomunicazioni
IT Settore economico
IT Trasporti
Liceo Classico
Liceo Scientifico
Classi ammesse
Quarta
Quinta
Il trasferimento delle competenze si realizza in un’ambiente di apprendimento flessibile, che ponga al centro del percorso gli interessi degli studenti e i loro vissuti di esperienza. Tale metodologia è basata sull'apprendimento che nasce dall'esperienza laboratoriale per favorire l’operatività e il dialogo, la riflessione su quello che si fa, favorendo così le opportunità per lo studente di costruire attivamente il proprio sapere.
Supporti per la realizzazione:
Carte tematiche – dataset – format di questionari
Le competenze attese sono volte a potenziare la capacità di problem solving rispetto agli indicatori rappresentativi della gestione territoriale:

Ambito: RISCHIO
- Analisi degli scenari di emergenza urbana: sisma, alluvione, black out, inquinamento
- Identificazione dei rischi attuali e futuri
- Gestione delle emergenze

Ambito: PREVENZIONE
- Collezione dei dati e scenari: come leggere gli eventi
- Valutazione dei rischi e analisi
- Implementazione di un sistema risposta precoce e organizzata

Ambito: RESILIENZA
- Sensibilizzazione
- Riqualificazione
- Mantenimento e consolidamento delle infrastrutture
Anno
2020
Struttura
DIPARTIMENTO DI INGEGNERIA STRUTTURALE E GEOTECNICA
Descrizione
I percorsi per le competenze trasversali e per l'orientamento, nella loro missione istituzionale, si propongono come mezzo per realizzare un collegamento tra le scuole e il mondo del lavoro, la società civile e il territorio. In particolare, sono finalizzati all'arricchimento della formazione scolastica con l'acquisizione di competenze spendibili in tutti i contesti, orientando a scelte consapevoli nella prosecuzione degli studi che non richiedano revisioni e cambi di corso di laurea o abbandoni di carriere universitarie che si sarebbero potute concludere se fossero state precedute da un investimento sulla conoscenza di sé e il potenziamento delle competenze trasversali (cosiddette Soft Skills).
Il progetto si propone di far sperimentare agli studenti del secondo biennio liceale, momento di grande importanza per la crescita personale e relazionale, la frequenza e la preparazione (anche in gruppo), di singoli moduli delle discipline del primo anno dei corsi di laurea in architettura e ingegneria in cui i docenti del dipartimento del proponente prestano servizio didattico, richiamando periodicamente la loro attenzione all’acquisizione contestuale delle competenze trasversali che l’esperienza di studio universitario ha loro sollecitato.
Struttura organizzativa
Tipologia posti
Normale
Attivo
0
Sede
Sede esterna in Roma
Mesi
  • Marzo,
  • Aprile,
  • Maggio
Giorni
  • Lunedì,
  • Martedì,
  • Mercoledì,
  • Giovedì,
  • Venerdì
Orari
Indifferente
Posti disponibili
40
Monte ore
40
Ambito
[Orientamento universitario/Accoglienza]
Competenze trasversali
Attitudini al lavoro di gruppo
Capacità di adattamento a diversi ambienti
Capacità di comunicazione
Capacità di organizzare il proprio lavoro
Capacità di problem solving
Tipo scuole
Nessuna preferenza
Classi ammesse
Terza
Quarta
Quinta
Attività previste: frequenza a distanza di UDA disciplinari afferenti al primo anno del corso di laurea. Condivisione di materiali/ bibliografia di riferimento.
Stesura di un diario di bordo dell’esperienza di PCTO. Monitoraggio dei tutor in itinere attraverso brainstorming, focus group, interviste/questionari agli studenti. Affidamento da parte dei tutor di lavori di gruppo di approfondimento dell’UDA di riferimento. Simulazioni d’esame. Questionario di autovalutazione. Restituzione dei risultati agli studenti e al tutor scolastico.
Capacità di adattarsi a un ambiente diverso da quello del piccolo gruppo-classe, capacità di seguire una lezione o una unità didattica di livello superiore a quello abituale, di ritrovarla all'interno di uno o più manuali consigliati, di far proprio l'argomento e superare simulazioni di esercizi d'esame, anche con attività di gruppo.
Anno
2020
Struttura
DIPARTIMENTO DI INGEGNERIA CHIMICA, MATERIALI, AMBIENTE
Descrizione
Che cosa fare per rendere le nostre città più inclusive, sicure, resilienti e sostenibili?
Se è vero che ogni realtà ha le proprie caratteristiche che derivano da condizioni socio-economiche-culturali di contesto, la riduzione delle vulnerabilità locali sintetizza un obiettivo prioritario comune: ridurre il rischio per aumentare la resilienza delle singole comunità.
C’è una stretta relazione tra i due concetti che si inverte a seconda che si lavori sulla gestione degli impatti o sulla riduzione delle vulnerabilità, sulla contingenza o sulla prevenzione. Più si agisce in risposta a sollecitazioni contingenti, e più si interviene in ritardo con misure approssimative, più gli impatti che l’evento produce possono risultare notevoli, aumentando così il divario tra livello di rischio e capacità del sistema di assorbirlo, ovvero di essere resiliente.
Il percorso si prefigge l’obiettivo di diffondere la cultura della sicurezza attraverso la partecipazione ad un laboratorio che prevede “simulazioni” (role-playing game) di procedure e piani di emergenza che necessitano di individuare il problema, decidere una strategia, gestire l’imprevisto, definire i ruoli (amministratori, cittadini, esperti).
Struttura organizzativa
Tipologia posti
Coprogettazione parziale
Attivo
1
Sede
Sede esterna fuori Roma
Mesi
  • Giugno,
  • Luglio
Giorni
  • Giovedì,
  • Venerdì,
  • Sabato
Orari
Indifferente
Posti disponibili
24
Monte ore
30
Ambito
Scientifico (matematica, informatica, fisica, chimica, biologia, scienze della terra, geologia)
Competenze trasversali
Attitudini al lavoro di gruppo
Capacità decisionali
Capacità di diagnosi
Capacità di organizzare il proprio lavoro
Capacità di problem solving
Capacità nella visione di insieme
Tipo scuole
IP Artigianato
IP Industriali
IP Tecnici
IT Costruzioni
IT Informatico/Telecomunicazioni
IT Settore economico
IT Trasporti
Liceo Classico
Liceo Scientifico
Classi ammesse
Quarta
Quinta
Il trasferimento delle competenze si realizza in un’ambiente di apprendimento flessibile, che ponga al centro del percorso gli interessi degli studenti e i loro vissuti di esperienza. Tale metodologia è basata sull'apprendimento che nasce dall'esperienza laboratoriale per favorire l’operatività e il dialogo, la riflessione su quello che si fa, favorendo così le opportunità per lo studente di costruire attivamente il proprio sapere.
Supporti per la realizzazione:
Carte tematiche – dataset – format di questionari
Le competenze attese sono volte a potenziare la capacità di problem solving rispetto agli indicatori rappresentativi della gestione territoriale:

Ambito: RISCHIO
- Analisi degli scenari di emergenza urbana: sisma, alluvione, black out, inquinamento
- Identificazione dei rischi attuali e futuri
- Gestione delle emergenze

Ambito: PREVENZIONE
- Collezione dei dati e scenari: come leggere gli eventi
- Valutazione dei rischi e analisi
- Implementazione di un sistema risposta precoce e organizzata

Ambito: RESILIENZA
- Sensibilizzazione
- Riqualificazione
- Mantenimento e consolidamento delle infrastrutture
Anno
2020
Struttura
DIPARTIMENTO DI SCIENZE DI BASE ED APPLICATE PER L'INGEGNERIA
Descrizione
La chimica, la fisica e la matematica sono discipline scientifiche la cui storia è legata strettamente alla storia della conoscenza umana. Da sempre queste discipline hanno aiutato l’uomo ad affrontare e risolvere i problemi del mondo reale. Questo è ancora più vero nei nostri giorni nei quali le sfide che deve affrontare la nostra società richiedono strumenti sempre più sofisticati. In effetti, alla base delle moderne tecnologie ci sono gli strumenti più avanzati della chimica, della fisica e della matematica. Il progetto, articolato in varie attività di laboratorio, ha lo scopo di mostrare alcune applicazioni di questi strumenti. Si mostrerà cosa è un laser e come può essere utilizzato per studiare le proprietà della luce e per la trasmissione di segnali ottici (vortici ottici, entaglement). Si mostrerà cosa sono il suono e il rumore e come misurare l’inquinamento acustico. Si mostrerà cosa sono i microscopi elettronici, i microscopi a forza atomica e i miscroscopi ottici e come costruire immagini di oggetti infinitamente piccoli. Si mostrerà come funziona un motore di ricerca e come vengono compresse le immagini multimediali. Le attività di laboratorio avranno carattere sperimentale e saranno svolte nel Laboratorio di Ottica Non Lineare, nel Laboratorio di Acustica Fisica, nel Laboratorio Informatico del Dipartimento Scienze di Base e Applicate per l’Ingegneria della Sapienza e nel Laboratorio per le Nanotecnologie e le Nanoscienze della Sapienza. Gli studenti saranno guidati a svolgere loro stessi dei semplici esperimenti e parteciperanno a esperimenti più sofisticati.
Con questo progetto gli studenti impareranno come la chimica, la fisica e la matematica siano strumenti fondamentali per capire la realtà che ci circonda e per creare tecnologie innovative.
Struttura organizzativa
Tipologia posti
Normale
Attivo
1
Sede
Sede esterna in Roma
Mesi
  • Febbraio,
  • Marzo,
  • Aprile,
  • Maggio
Giorni
  • Lunedì,
  • Martedì,
  • Mercoledì,
  • Giovedì,
  • Venerdì
Orari
PM
Posti disponibili
20
Monte ore
20
Ambito
Scientifico (matematica, informatica, fisica, chimica, biologia, scienze della terra, geologia)
Competenze trasversali
Attitudini al lavoro di gruppo
Capacità di comunicazione
Capacità di problem solving
Spirito di iniziativa
Tipo scuole
IP Industriali
Liceo Classico
Liceo Scientifico
Classi ammesse
Quarta
Il progetto verrà sviluppato fornendo inizialmente alcune informazioni base sulle tecnologie e sulla strumentazione che verranno utilizzate nelle varie attività di laboratorio. Successivamente, guidati da ricercatori esperti, gli studenti parteciperanno a semplici esperimenti in cui gli strumenti verranno utilizzati sia per lo studio di fenomeni di base che per applicazioni a problemi del mondo reale. Infine, gli studenti realizzeranno del materiale didattico per illustrare il lavoro svolto.
Gli studenti acquisiranno competenze su come vengono svolte le attività in un laboratorio di ricerca e su come condurre una ricerca scientifica. Inoltre, acquisiranno familiarità con alcune metodologie avanzate della chimica, della fisica e della matematica. Impareranno a confrontarsi con problemi del mondo reale e a riconoscere quali strumenti delle scienze di base è necessario utilizzare per poterli affrontare. Gli studenti acquisiranno anche capacità di comunicazione attraverso la realizzazione di materiale didattico che descriva il lavoro svolto.
Anno
2020
Struttura
DIPARTIMENTO DI SCIENZE DI BASE ED APPLICATE PER L'INGEGNERIA
Descrizione
Lo studio delle interazioni tra popolazioni ha applicazioni in molti campi, dalla chimica all'ecologia, dalla fisica nucleare alla epidemiologia. Un modello classico utilizzato per descrivere due specie interagenti è il modello preda-predatore di Lotka-Volterra. Nel corso delle attività del progetto verranno illustrate le caratteristiche principali del modello e verrà mostrato come utilizzarlo per rappresentare vari tipi di interazione. Verranno utilizzati degli strumenti di calcolo per simulare le variazioni delle due specie al variare del tempo in vari scenari. Gli studenti verranno guidati per compiere loro stessi le simulazioni e verrà prodotto del materiale contenente la descrizione del modello e delle simulazioni fatte.
Con questo progetto gli studenti impareranno come la matematica sia uno strumento fondamentale per studiare la realtà che ci circonda e come la simulazione permetta di ricavare informazioni difficili da ottenere tramite osservazioni dirette.
Struttura organizzativa
Tipologia posti
Coprogettazione totale
Attivo
1
Sede
Sede esterna in Roma
Mesi
  • Novembre,
  • Dicembre,
  • Gennaio,
  • Febbraio,
  • Marzo
Giorni
  • Lunedì,
  • Martedì,
  • Mercoledì,
  • Giovedì,
  • Venerdì
Orari
PM
Posti disponibili
20
Monte ore
24
Ambito
Scientifico (matematica, informatica, fisica, chimica, biologia, scienze della terra, geologia)
Competenze trasversali
Attitudini al lavoro di gruppo
Capacità di comunicazione
Capacità di organizzare il proprio lavoro
Capacità di problem solving
Spirito di iniziativa
Tipo scuole
Liceo Classico
Liceo Scientifico
Classi ammesse
Quarta
Quinta
Il progetto verrà sviluppato fornendo inizialmente alcune informazioni storiche sullo sviluppo dei modelli di crescita di popolazione e sul contributo fondamentale fornito in questo settore dal matematico Vito Volterra. Successivamente si introdurranno gli strumenti matematici necessari a descrivere il modello preda-predatore. Quindi si analizzeranno i vari scenari che il modello permette di descrivere ricorrendo a strumenti di calcolo per la simulazione. Infine, gli studenti realizzeranno del materiale didattico per illustrare il lavoro svolto.
Gli studenti acquisiranno competenze matematiche e informatiche di base. In particolare, gli studenti impareranno a formulare un modello matematico a partire dall'analisi di un fenomeno del mondo reale. Acquisiranno gli strumenti matematici di base per descrivere il fenomeno in esame e per simularne il comportamento. Impareranno poi a visualizzare i risultati delle simulazioni e a interpretarli. Gli studenti acquisiranno anche capacità di comunicazione attraverso la realizzazione di materiale didattico che descriva il lavoro svolto.