Ingegneria civile e industriale

Anno
2019
Struttura
DIPARTIMENTO DI SCIENZE DI BASE ED APPLICATE PER L'INGEGNERIA
Descrizione
Lo studio delle interazioni tra popolazioni ha applicazioni in molti campi, dalla chimica all'ecologia, dalla fisica nucleare alla epidemiologia. Un modello classico utilizzato per descrivere due specie interagenti è il modello preda-predatore di Lotka-Volterra. Nel corso delle attività del progetto verranno illustrate le caratteristiche principali del modello e verrà mostrato come utilizzarlo per rappresentare vari tipi di interazione. Verranno utilizzati degli strumenti di calcolo per simulare le variazioni delle due specie al variare del tempo in vari scenari. Gli studenti verranno guidati per compiere loro stessi le simulazioni e verrà prodotto del materiale contenente la descrizione del modello e delle simulazioni fatte.
Con questo progetto gli studenti impareranno come la matematica sia uno strumento fondamentale per studiare la realtà che ci circonda e come la simulazione permetta di ricavare informazioni difficili da ottenere tramite osservazioni dirette.
Struttura organizzativa
Tipologia posti
Normale
Attivo
1
Sede
Sede esterna in Roma
Mesi
  • Febbraio,
  • Marzo,
  • Aprile,
  • Maggio
Giorni
  • Lunedì
Orari
PM
Posti disponibili
25
Monte ore
25
Ambito
Scientifico (matematica, informatica, fisica, chimica, biologia, scienze della terra, geologia)
Competenze trasversali
Attitudini al lavoro di gruppo
Capacità decisionali
Capacità di comunicazione
Capacità di diagnosi
Capacità di gestione del tempo
Capacità di organizzare il proprio lavoro
Capacità di problem solving
Capacità nella visione di insieme
Spirito di iniziativa
Tipo scuole
Liceo Classico
Liceo Scientifico
Classi ammesse
Quarta
Il progetto verrà sviluppato fornendo inizialmente alcune informazioni storiche sullo sviluppo dei modelli di crescita di popolazione e sul contributo fondamentale fornito in questo settore dal matematico Vito Volterra. Successivamente si introdurranno gli strumenti matematici necessari a descrivere il modello preda-predatore. Quindi si analizzeranno i vari scenari che il modello permette di descrivere ricorrendo a strumenti di calcolo per la simulazione. Infine, gli studenti realizzeranno del materiale didattico per illustrare il lavoro svolto.
Gli studenti acquisiranno competenze matematiche e informatiche di base. In particolare, gli studenti impareranno a formulare un modello matematico a partire dall'analisi di un fenomeno del mondo reale. Acquisiranno gli strumenti matematici di base per descrivere il fenomeno in esame e per simularne il comportamento. Impareranno poi a visualizzare i risultati delle simulazioni e a interpretarli. Gli studenti acquisiranno anche capacità di comunicazione attraverso la realizzazione di materiale didattico che descriva il lavoro svolto.
Anno
2019
Struttura
DIPARTIMENTO DI INGEGNERIA MECCANICA E AEROSPAZIALE
Descrizione
L'attività consiste in un lavoro di progettazione e costruzione di mini rocket, ovvero razzo modelli monostadio in grado di raggiungere quote dai 50 ai 300 metri circa mediante l'impiego di motori a propellente solido commerciali. Ogni gruppo di studenti (4 6) deve sviluppare il proprio progetto tenendo conto di: i) prestazioni e curva di spinta del motore ii) variazione di massa del razzo modello iii) quota di lancio iv) resistenza aerodinamica v) condizioni atmosferiche, etc. Nel progetto è inoltre necessario tener conto delle variabili non predicibili a priori (vento, dispersione della spinta, etc.) e fornire infine una previsione delle prestazioni di volo (quota massima e velocità massima).
Struttura organizzativa
Tipologia posti
Normale
Attivo
1
Sede
Citta universitaria
Mesi
  • Marzo,
  • Aprile,
  • Maggio
Giorni
  • Lunedì
Orari
PM
Posti disponibili
6
Monte ore
40
Ambito
Scientifico (matematica, informatica, fisica, chimica, biologia, scienze della terra, geologia)
Competenze trasversali
Attitudini al lavoro di gruppo
Capacità decisionali
Capacità di adattamento a diversi ambienti
Capacità di gestione del tempo
Capacità di gestire lo stress
Capacità di organizzare il proprio lavoro
Capacità di problem solving
Spirito di iniziativa
Tipo scuole
IP Industriali
IP Tecnici
IT Chimico
IT Costruzioni
IT Elettronico/Elettrotecnico
IT Informatico/Telecomunicazioni
IT Meccanico
IT Trasporti
Liceo Classico
Liceo Scientifico
Classi ammesse
Quarta
Quinta
I razzo modelli sono modelli volanti costruiti con materiali leggeri come cartone, legno, plastica e materiali compositi. I modelli hanno dimensioni che variano dai 50 agli oltre 150 cm di lunghezza con masse mediamente comprese fra i 150 e i 350 grammi. I razzo modelli vengono dotati di un sistema di recupero (tipicamente uno o più paracadute) per il rientro a terra in sicurezza e senza danni e di opportuna strumentazione (altimetro barometrico) atta a misurare le prestazioni del volo (profilo quota tempo e velocità tempo).
Le competenze specifiche sviluppate attraverso lo svolgimento di questa attività sono dettagliate nel seguito: addestramento all'uso di una metodologia progettuale per la realizzazione di razzo modelli monostadio in materiali leggeri, apprendimento dei modelli teorico/numerici per la previsione delle prestazioni del razzo (quota, velocità, accelerazione, tempo di ascesa, etc.), costruzione pratica dei razzo modelli stessi e test competitivi di lancio.
Anno
2019
Struttura
DIPARTIMENTO DI INGEGNERIA ASTRONAUTICA, ELETTRICA ED ENERGETICA
Descrizione
DESCRIZIONE DEL PROGETTO
Il Progetto è rivolto a tutte le Classi V delle scuole superiori sia dei Licei sia degli Istituti Tecnici, con lo scopo principale di introdurre gli studenti allo studio e sperimentazione pratica dei componenti in alta tensione.
Gli studenti apprenderanno i principi di funzionamento dei principali componenti utilizzati nei sistemi elettrici in alta tensione; in particolare, saranno meglio approfonditi i temi riguardanti linee e cavi elettrici in alta tensione sia per applicazioni terrestre che sottomarine. Un focus particolare sarà dedicato agli isolamenti liquidi.
Le attività saranno svolte presso la Facoltà di Ingegneria e il Laboratorio di Alte Tensioni del Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica Via Eudossiana 18, Roma.

Struttura organizzativa
Tipologia posti
Coprogettazione totale
Attivo
1
Sede
Sede esterna in Roma
Mesi
  • Maggio,
  • Giugno
Giorni
  • Lunedì,
  • Martedì,
  • Mercoledì,
  • Giovedì,
  • Venerdì
Orari
Indifferente
Posti disponibili
40
Monte ore
60
Ambito
Scientifico (matematica, informatica, fisica, chimica, biologia, scienze della terra, geologia)
Competenze trasversali
Attitudini al lavoro di gruppo
Capacità decisionali
Capacità di comunicazione
Capacità di diagnosi
Capacità di gestione del tempo
Capacità di organizzare il proprio lavoro
Capacità di problem solving
Capacità nella visione di insieme
Capacità nelle flessibilità
Spirito di iniziativa
Tipo scuole
IT Elettronico/Elettrotecnico
IT Informatico/Telecomunicazioni
IT Meccanico
IT Trasporti
Liceo Artistico
Liceo Classico
Liceo delle Scienze Umane
Liceo Linguistico
Liceo Scientifico
Classi ammesse
Quinta
Lo studente verrà a conoscenza innanzitutto delle tecnologie dei componenti in alta tensione, con i dovuti approfondimenti bibliografici.
In laboratorio si svolgeranno prove di tenuta elettrica, in diverse condizioni, su componenti elettrici, in particolare si potranno effettuare prove su un generatore in alta tensione impulsiva sino a 600 kV..
La sperimentazione in laboratorio permetterà di tradurre in pratica le conoscenze teoriche acquisite.
Il lavoro è previsto in gruppo.

Le competenze specifiche che lo studente potrà acquisire riguardano la partecipazione a prove sperimentali relative a componenti in alta tensione. Gli studenti apprenderanno i principi di funzionamento dei principali componenti utilizzati nei sistemi elettrici in alta tensione; in particolare, saranno meglio approfonditi i temi riguardanti linee e cavi elettrici in alta tensione sia per applicazioni terrestre che sottomarine.
Ciò sarà anche conseguito attraverso l'organizzazione di seminari rivolti alla comunità scientifica alla quale gli studenti daranno il loro contributo.
Anno
2019
Struttura
DIPARTIMENTO DI INGEGNERIA MECCANICA E AEROSPAZIALE
Descrizione
Il corso di Laboratorio di Propulsione Aeronautica ha come scopo principale la comprensione approfondita dell'effetto dei parametri di progetto sulle prestazioni di un motore aeronautico di tipo turbojet, turbofan o turbo prop.
Tale obiettivo è perseguito tramite l'implementazione, da parte degli studenti, di un software per il calcolo e la visualizzazione del ciclo termodinamico e delle prestazioni di un motore aeronautico a scelta dello studente.
Oltre che alla comprensione dei principi alla base della progettazione di un motore aeronautico, viene data particolare importanza al design del software. L'ambiente di sviluppo è la piattaforma Wolfram Mathematica. Vengono forniti rudimenti di programmazione ad oggetti, validi indipendentemente dal linguaggio di programmazione impiegato, e volti allo scopo di ridurre il rischio di errori di programmazione, garantire la riutilizzabilità del codice, e favorire l'interazione con programmatori terzi.
Una prima fase del corso è dedicata al ripasso degli argomenti di propulsione aeronautica d'interesse, e ad un'introduzione agli strumenti informatici necessari (Wolfram Mathematica).

Struttura organizzativa
Tipologia posti
Normale
Attivo
1
Sede
Sede esterna in Roma
Mesi
  • Marzo,
  • Aprile,
  • Maggio
Giorni
  • Lunedì
Orari
PM
Posti disponibili
5
Monte ore
40
Ambito
Scientifico (matematica, informatica, fisica, chimica, biologia, scienze della terra, geologia)
Competenze trasversali
Capacità di comunicazione
Capacità di diagnosi
Capacità di gestione del tempo
Capacità di organizzare il proprio lavoro
Capacità di problem solving
Capacità di relazioni
Capacità nelle flessibilità
Tipo scuole
Liceo Classico
Liceo Scientifico
Classi ammesse
Terza
Quarta
Quinta
Una prima fase del corso è dedicata al ripasso degli argomenti di propulsione aeronautica d'interesse, e ad un'introduzione agli strumenti informatici necessari (Wolfram Mathematica).
Successivamente, ad ogni studente è richiesta l'implementazione di un codice per il calcolo e la visualizzazione del ciclo termodinamico e delle prestazioni del motore aeronautico scelto. Le specifiche del problema in analisi vengono scelte dallo studente, discusse collettivamente in classe, ed eventualmente modificate prima del passaggio alla fase realizzativa. I risultati devono essere descritti e discussi un elaborato finale da redigersi in classe e valutato ai fini dell'ottenimento dell'idoneità.
Le ultime due lezioni sono dedicate alla revisione dell'elaborato da parte del docente, nonché alla correzione dello stesso da parte degli studenti.
Tutto il lavoro viene svolto in classe sotto la continua supervisione del docente. Inoltre, la collaborazione e il dialogo tra studenti, nonché lo scambio di codice, sono incoraggiati.

Alle lezioni teoriche impartite agli studenti universitari saranno affiancati dei momenti di approfondimento, spesso a cura degli studenti universitari stessi, volti a rendere i concetti più comprensibili agli studenti di liceo.

I compiti impartiti agli studenti universitari saranno di volta in volta rimodulati per venire incontro alle competenze e alle capacità degli studenti del liceo.
Agli studenti sono richieste solide basi della matematica e della fisica impartite alle scuole superiori.
In particolare è auspicabile una buona conoscenza della meccanica e dei principi della termodinamica.
E' inoltre auspicabile una buona dimestichezza con l'utilizzo del computer.
Anno
2019
Struttura
DIPARTIMENTO DI INGEGNERIA MECCANICA E AEROSPAZIALE
Descrizione
Lo studente sarà coinvolto in attività di test e misurazione delle prestazioni di sistemi innovativi di impianti di gassificazione biomasse e celle a combustibile, nonchè in un processo sperimentale di montaggio e smontaggio dei dispositivi.
Si esamineranno sia la gassificazione di diversi tipi di biomasse che celle a combustibile alimentate a combustibili liquidi (metanolo) che celle che funzionano utilizzando in maniera opportuna i batteri presenti nel terreno.
Struttura organizzativa
Tipologia posti
Normale
Attivo
1
Sede
Sede esterna in Roma
Mesi
  • Novembre,
  • Dicembre,
  • Gennaio,
  • Febbraio,
  • Marzo,
  • Aprile
Giorni
  • Martedì
Orari
Indifferente
Posti disponibili
2
Monte ore
20
Ambito
Scientifico (matematica, informatica, fisica, chimica, biologia, scienze della terra, geologia)
Competenze trasversali
Attitudini al lavoro di gruppo
Capacità di comunicazione
Capacità di diagnosi
Capacità di problem solving
Capacità nella visione di insieme
Spirito di iniziativa
Tipo scuole
IT Agraria
IT Elettronico/Elettrotecnico
IT Meccanico
Liceo Classico
Liceo Scientifico
Classi ammesse
Quinta
Esercitazioni in laboratorio con uso di carico elettronico
Informazioni sul funzionamento delle celle a combustibile: spiegazione dei fenomeni di base e dei processi fondamentali
Uso di sistemi di misura di corrente e tensione.
Uso di dispositivi utili per montaggio e smontaggio (chiavi inglesi e cacciaviti)
Conoscenze di chimica elementare e segnatamente le reazioni di ossido riduzione, i processi di dissociazione elementare delle sostanze (metanolo).
Conoscenze di base di biologia (batteri)
Conoscenza delle biomasse
Capacità di usare chiavi inglesi, cacciaviti e di utilizzare il tester.
Conoscenza di Windows, conoscenza base di Word e di Excel, preferibilmente ultime versioni.
Anno
2019
Struttura
DIPARTIMENTO DI INGEGNERIA ASTRONAUTICA, ELETTRICA ED ENERGETICA
Descrizione
Il Progetto è rivolto alle Classi IV del Liceo Scientifico, con lo scopo principale di introdurre gli studenti allo studio e alla sperimentazione delle misure elettriche ed elettroniche. Gli studenti apprenderanno il funzionamento di alcune strumentazioni presenti nel Laboratorio di Metodi e Strumenti del Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica sede Ingegneria Elettrica, Via Eudossiana 18, Roma.
Nello specifico saranno svolte le attività di seguito dettagliate.
studio delle metodologie di misura e dei principali strumenti di misura.
acquisizione delle competenze specifiche sui sistemi di acquisizione digitali per la gestione remota di sensori.
utilizzo della scheda PCI 6036E.
Struttura organizzativa
Tipologia posti
Coprogettazione totale
Attivo
1
Sede
Sede esterna in Roma
Mesi
  • Novembre,
  • Dicembre,
  • Gennaio,
  • Febbraio,
  • Marzo,
  • Aprile
Giorni
  • Lunedì,
  • Martedì,
  • Mercoledì,
  • Giovedì,
  • Venerdì
Orari
Indifferente
Posti disponibili
30
Monte ore
40
Ambito
Scientifico (matematica, informatica, fisica, chimica, biologia, scienze della terra, geologia)
Competenze trasversali
Attitudini al lavoro di gruppo
Capacità di comunicazione
Capacità di organizzare il proprio lavoro
Capacità nelle flessibilità
Spirito di iniziativa
Tipo scuole
Liceo Scientifico
Classi ammesse
Quarta
Lo studente verrà a conoscenza innanzitutto delle tecnologie e metodologie proprie delle misure elettriche ed elettroniche. Successivamente, utilizzerà le attrezzature disponibili presso il Laboratorio di Metodi e Strumenti per la sperimentazione e messa a punto di tali metodologie e tecniche.Nello specifico saranno svolte le attività di seguito dettagliate.
studio delle metodologie di misura e dei principali strumenti di misura.
acquisizione delle competenze specifiche sui sistemi di acquisizione digitali per la gestione remota di sensori.
utilizzo della scheda PCI 6036E.
Le competenze specifiche che lo studente potrà acquisire riguardano lo sviluppo e la messa a punto di tecnologie e metodologie proprie delle misure elettriche ed elettroniche nell'ambito dei sistemi di acquisizione digitali.Nello specifico saranno svolte le attività di seguito dettagliate.
studio delle metodologie di misura e dei principali strumenti di misura.
acquisizione delle competenze specifiche sui sistemi di acquisizione digitali per la gestione remota di sensori.
utilizzo della scheda PCI 6036E.
Anno
2019
Struttura
DIPARTIMENTO DI INGEGNERIA ASTRONAUTICA, ELETTRICA ED ENERGETICA
Descrizione
Il Progetto è rivolto alle Classi IV del Liceo Scientifico, con lo scopo principale di introdurre gli studenti allo studio e alla sperimentazione delle misure elettriche ed elettroniche. Gli studenti apprenderanno il funzionamento di alcune strumentazioni presenti nel Laboratorio di Misure Elettroniche del Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica sede Ingegneria Elettrica, Via Eudossiana 18, Roma.
Nello specifico saranno svolte le attività di seguito dettagliate.
studio delle metodologie di misura e dei principali strumenti di misura.
acquisizione delle competenze specifiche sui sistemi di acquisizione digitali per la gestione remota di sensori.
utilizzo della scheda a microcontrollore Arduino per poterla interfacciare con il mondo esterno.
Struttura organizzativa
Tipologia posti
Coprogettazione totale
Attivo
1
Sede
Sede esterna in Roma
Mesi
  • Novembre,
  • Dicembre,
  • Gennaio,
  • Febbraio,
  • Marzo,
  • Aprile
Giorni
  • Lunedì,
  • Martedì,
  • Mercoledì,
  • Giovedì,
  • Venerdì
Orari
Indifferente
Posti disponibili
30
Monte ore
40
Ambito
Scientifico (matematica, informatica, fisica, chimica, biologia, scienze della terra, geologia)
Competenze trasversali
Attitudini al lavoro di gruppo
Capacità di comunicazione
Capacità di organizzare il proprio lavoro
Capacità nelle flessibilità
Spirito di iniziativa
Tipo scuole
Liceo Scientifico
Classi ammesse
Quarta
Lo studente verrà a conoscenza innanzitutto delle tecnologie e metodologie proprie delle misure elettriche ed elettroniche. Successivamente, utilizzerà le attrezzature disponibili presso il Laboratorio di Misure Elettroniche per la sperimentazione e messa a punto di tali metodologie e tecniche.
Le competenze specifiche che lo studente potrà acquisire riguardano lo sviluppo e la messa a punto di tecnologie e metodologie proprie delle misure elettriche ed elettroniche nell'ambito dei sistemi di acquisizione digitali. Nello specifico saranno svolte le attività di seguito dettagliate.
studio delle metodologie di misura e dei principali strumenti di misura.
acquisizione delle competenze specifiche sui sistemi di acquisizione digitali per la gestione remota di sensori.
utilizzo della scheda a microcontrollore Arduino per poterla interfacciare con il mondo esterno.
Anno
2019
Struttura
DIPARTIMENTO DI INGEGNERIA ASTRONAUTICA, ELETTRICA ED ENERGETICA
Descrizione
Il Progetto è rivolto a tutte le Classi V delle scuole superiori sia dei Licei sia degli Istituti Tecnici, con lo scopo principale di introdurre gli studenti allo studio e sperimentazione pratica di impianti domotici e di building automation.
Gli studenti apprenderanno i principi di funzionamento dei sistemi BUS per l'edificio sia in ambito residenziale che terziario, e apprenderanno i principi generali di programmazione dei sistemi.
Le attività saranno svolte presso il Laboratorio di Impianti Elettrici del Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica sede Ingegneria Elettrica, Via Eudossiana 8, Roma.
Struttura organizzativa
Tipologia posti
Coprogettazione totale
Attivo
1
Sede
Sede esterna in Roma
Mesi
  • Gennaio,
  • Febbraio,
  • Giugno,
  • Luglio
Giorni
  • Lunedì,
  • Martedì,
  • Mercoledì,
  • Giovedì,
  • Venerdì
Orari
AM
Posti disponibili
30
Monte ore
60
Ambito
Scientifico (matematica, informatica, fisica, chimica, biologia, scienze della terra, geologia)
Competenze trasversali
Attitudini al lavoro di gruppo
Capacità decisionali
Capacità di comunicazione
Capacità di diagnosi
Capacità di gestione del tempo
Capacità di organizzare il proprio lavoro
Capacità di problem solving
Capacità nella visione di insieme
Capacità nelle flessibilità
Spirito di iniziativa
Tipo scuole
IT Costruzioni
IT Elettronico/Elettrotecnico
IT Informatico/Telecomunicazioni
IT Meccanico
Liceo Artistico
Liceo Classico
Liceo delle Scienze Umane
Liceo Linguistico
Liceo Scientifico
Classi ammesse
Quinta
Lo studente verrà a conoscenza innanzitutto delle tecnologie e metodologie proprie dei sistemi di ultima generazione per la building automation. Successivamente, utilizzerà i componenti disponibili presso il laboratorio di Impianti per la sperimentazione e messa a punto di tali metodologie e tecniche.
Il lavoro è previsto in gruppo.
Le competenze specifiche che lo studente potrà acquisire riguardano lo sviluppo e la messa a punto di impianti domotici e di building automation con particolare riguardo alla gestione di ambienti sia residenziali che terziari e di gestione di piccole reti elettriche smart. Si acquisirà un livello minimo di conoscenza dello standard domotico Konnex, un livello base di programmazione dei dispositivi e del sistema e di impostazione del progetto di un supervisore.

Anno
2019
Struttura
DIPARTIMENTO DI INGEGNERIA ASTRONAUTICA, ELETTRICA ED ENERGETICA
Descrizione
Il Progetto è rivolto alle Classe V dei Licei ed Istituti Tecnici, con lo scopo principale di introdurre gli studenti allo studio e sperimentazione di tecnologie per la fabbricazione di strutture aerospaziali in materiale composito avanzato e di tecniche di additive manufacturing. Gli studenti apprenderanno il funzionamento delle numerose strumentazioni presenti nel Laboratorio SASLab ubicato in Via Salaria 851.
Struttura organizzativa
Tipologia posti
Coprogettazione totale
Attivo
1
Sede
Sede esterna in Roma
Mesi
  • Gennaio,
  • Febbraio,
  • Marzo
Giorni
  • Lunedì,
  • Martedì,
  • Mercoledì,
  • Giovedì,
  • Venerdì,
  • Sabato,
  • Domenica
Orari
Indifferente
Posti disponibili
28
Monte ore
0
Ambito
Scientifico (matematica, informatica, fisica, chimica, biologia, scienze della terra, geologia)
Competenze trasversali
Attitudini al lavoro di gruppo
Capacità di comunicazione
Capacità di organizzare il proprio lavoro
Capacità nelle flessibilità
Spirito di iniziativa
Tipo scuole
IT Elettronico/Elettrotecnico
IT Informatico/Telecomunicazioni
IT Meccanico
IT Trasporti
Liceo Classico
Liceo Scientifico
Classi ammesse
Quinta
Lo studente verrà a conoscenza innanzitutto delle tecnologie di base ed avanzate per la fabbricazione e caratterizzazione di materiali compositi polimerici e di componenti metallici 3D mediante tecnica di additive manufacturing. Successivamente, utilizzerà le attrezzature disponibili presso il SasLab della sede di via Salaria per la sperimentazione e messa a punto di tali metodologie e tecniche.
Le competenze specifiche che lo studente potrà acquisire riguardano lo sviluppo e la messa a punto di tecnologie avanzate per la fabbricazione e caratterizzazione di materiali compositi polimerici e di componenti metallici 3D mediante tecnica di additive manufacturing.Gli studenti apprenderanno il funzionamento delle numerose strumentazioni presenti nel Laboratorio SASLab ubicato in Via Salaria 851.
Anno
2019
Struttura
DIPARTIMENTO DI INGEGNERIA ASTRONAUTICA, ELETTRICA ED ENERGETICA
Descrizione
Il Progetto è rivolto alle Classe V dei Licei ed Istituti Tecnici, con lo scopo principale di introdurre gli studenti allo studio e sperimentazione dell'elettrotecnica e delle tecnologie avanzate per la sensoristica, i materiali multifunzionali, l'energy harvesting. Gli studenti apprenderanno il funzionamento delle numerose strumentazioni presenti nei diversi Laboratori del Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica sede Ingegneria Elettrica, Via Eudossiana 81, Roma e presso il Laboratorio di Calcolo della Sezione di Energetica Nucleare con sede in Corso Vittorio Emanuele 244.
Nello specifico saranno svolte le attività di seguito dettagliate.
Laboratorio di Compatibilità Elettromagnetica e Nanotecnologie: gli allievi potranno vedere e sperimentale diverse tipologie di test elettrici, elettromeccanici ed elettromagnetici in un'ampia banda di frequenze su dispositivi per la schermatura elettromagnetica, la sensoristica, l'energy harvesting. In particolare, gli allievi parteciperanno alla messa a punto e sviluppo di piccoli sistemi di test e di reti di sensori. Gruppi di 3 allievi.
Struttura organizzativa
Tipologia posti
Coprogettazione totale
Attivo
1
Sede
Sede esterna in Roma
Mesi
  • Gennaio,
  • Febbraio,
  • Marzo
Giorni
  • Lunedì,
  • Martedì,
  • Mercoledì,
  • Giovedì,
  • Venerdì
Orari
Indifferente
Posti disponibili
40
Monte ore
60
Ambito
Scientifico (matematica, informatica, fisica, chimica, biologia, scienze della terra, geologia)
Competenze trasversali
Attitudini al lavoro di gruppo
Capacità di adattamento a diversi ambienti
Capacità di comunicazione
Capacità di organizzare il proprio lavoro
Capacità di problem solving
Capacità nelle flessibilità
Spirito di iniziativa
Tipo scuole
IP Industriali
IT Elettronico/Elettrotecnico
IT Informatico/Telecomunicazioni
IT Meccanico
IT Trasporti
Liceo Classico
Liceo Scientifico
Classi ammesse
Quinta
Lo studente verrà a conoscenza innanzitutto delle tecnologie e metodologie sperimentali e di test proprie dell'ingegneria elettrica, dell'elettrotecnica, delle misure elettriche ed elettromagnetiche, della sensoristica, della compatibilità elettromagnetica, delle nanotecnologie. Successivamente, utilizzerà le attrezzature disponibili presso i laboratori della sede di via delle Sette Sale 12 B per la sperimentazione e messa a punto di tali metodologie e tecniche.
Le competenze specifiche che lo studente potrà acquisire riguardano lo sviluppo e la messa a punto di tecnologie e metodologie sperimentali e di test proprie dell'ingegneria elettrica, dell'elettrotecnica, delle misure elettriche ed elettromagnetiche, della sensoristica, della compatibilità elettromagnetica, delle nanotecnologie